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B-CONVERGENCE PROPERTIES OF 
MULTISTEP RUNGE-KUTTA METHODS 

SHOUFU LI 

ABSTRACT. By using the theory of B-convergence for general linear methods to 
the special case of multistep Runge-Kutta methods, a series of B-convergence 
results for multistep Runge-Kutta methods is obtained, and it is proved that 
the family of algebraically stable r-step s-stage multistep Runge-Kutta methods 
with parameters al , a2, . . . , ar presented by Burrage in 1987 is optimally B- 
convergent of order at least s, and B-convergent of order s + 1 , provided that 
r > s and aj > O, j = 1, 2, ..., r. Furthermore, this family of methods is 
optimally B-convergent of order s + 1 if some other additional conditions are 
satisfied. 

1. INTRODUCTION 

Let X be a real or complex Hilbert space with the inner product (,*) and 
the corresponding norm 11 11, f: X -* X be a given sufficiently smooth mapping 
satisfying a one-sided Lipschitz condition 

Re(f(y) - f(z), y - z) < mlly - z112 Vy z E X. 

Consider the initial value problem 

(1.1) y'(t) = f(y(t)), O < t < T; y(O) = Yo, yo EX 

and the multistep Runge-Kutta method for solving (1.1): 

(1.2a) y(n) - + hBF(Y(-)) 

( 1 .2b) y(n) - Cy(n- 1) + hEF(Yn)), 

(1.2c) Xn = ,y(n). 

Here the problem (1. 1) is assumed to have a unique solution y (t) on the interval 
[O, T]. For the method (1.2) we assume that 

y(n) = (y(n) y(n) y(n)) E Xs y(n) = (y(n) j4n) ,...,yrn)) E Xr 

,n E X5 F( y(n)) = (pfy(n) .f(y(n)) py(n))) E Xs 
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h > 0 is the stepsize, A, B, C, E, and /J are linear mappings corresponding 
respectively to the real matrices 

FOIr-Il 
A= [ai] E Rs xr, B = [bij] eRsxs, C= [ erxr 

(1.3) [a 
E [-] erxs, f =[0,..., 0 1] e RRxr 

(cf. [11]), where a = [a I, cE2, .. , ar]T, 2y = [Yi, Y2, ..., ys]T, Jr_, is the 
(r - 1) x (r - 1) identity matrix, y.(n), y(n), and Xn are approximations to 
Y(tn + cih), y(tn + ih), and y(tn + rh), respectively, where 

s r 

tn =to +nh; ci = bij + 1(j - )aij, i= 1,2,5...,5s. 
j=1 j=1 

For simplicity, we write c = [c1, C2, ...5 , c- , C ' = [0, 1, ..., r - 1jT, 
eN = [1I 1, ..., 1]T E RN with N > 1, Y(t) = (y(t + cih), y(t + c2h), * . 

y(t + c5h)) E Xs, H(t) = (y(t + h), y(t + 2h), ..5 , y(t + rh)) E Xr, introduce 
the simplifying conditions (cf. [1]) 

B(T): pyTcP-l rP _ ayT4p 5 p = 15 25 ... T 

C(T): PBCP-1 =P C- ACP P = 1,5 2, . .., T; 

E(r): PAT diag(y)cP-l = diag(a)(rPer - CP) , p = 1, 2, ... ., T, 

and adopt the notational convention: M > 0 (or > 0) for a real symmetric 
matrix to mean that M is positive definite (or nonnegative definite). 

Note that multistep Runge-Kutta methods are a subclass of the General Lin- 
ear Methods of Butcher, and it is proved by Lie and N0rsett [13] that multistep 
collocation methods are a subclass of multistep Runge-Kutta methods. 

In 1987, Burrage [1] obtained the following results: 

Theorem 1.1. Suppose the method (1.2)-(1.3) satisfies the conditions B(2s), 
C(s), and E(s), ci # cj whenever i# j, Er =1 oj = 1, a, > 0, and a? > 0, 
j = 2, 3, ... , r. Then this method is algebraically stable for the matrices 

(1.4) G = diag al 5 al + a2 * * * E aj , D = diag(yl, .Y2, * * * Ys), 

and necessarily G > 0, D > 0. 

Theorem 1.2. Suppose that E = 1, ae1 > 0, oaj > 0, j = 2, 3,..., r. 
Then the multistep Runge-Kutta methods defined by (1.2), (1.3) and 



B-CONVERGENCE OF RUNGE-KUTTA METHODS 567 

r r k-k 
yj l j(x) dx - E ak lj I(x) dx, j = 1, 2, . ,s; 

k=2 

a =j = a lJl(x)dx, i = 1, 2, ..., s,j =1, 2, ..., r; 

,Cir k-1 

bij = j I(x) dx-, aik lj I(x) dx, i, j = 1, 25 . .., s; 
k=2 

(1.5) 11(x) =(x-c1)P'(c1) j=12 ... s; 

- h1h2 hss+l- 

s h2h3 ..hs+ 1hs+2 
P(X)fJ(X-Ck)=det.. 

k=i hh+... h2s_Ih2s 

- lx.. xS-lXS - 

hi = -(r - i = - , 2, ... , 2s, 

satisfy all the hypotheses of Theorem 1.1, and they are all algebraically stable 
for the matrices G > 0, D > 0 defined by (1.4). 

In 1988, the author of the present paper [10, 11] established the theory of 
B-convergence (B-theory) for general linear methods. We here only recall one 
of the basic principles: 

Theorem 1.3. If a general linear method is BH-stable and BH - (resp. BH*-) 
consistent of order p, then this method is optimally B-convergent of order p 
(resp. B-convergent of order p). 

In the present paper, the B-theory for general linear methods is applied to the 
special case of multistep Runge-Kutta methods. We first discuss the generalized 
stage order and diagonal stability of the methods (see Theorems 2.1-2.3); then, 
in view of B-theory and Theorems 1.1-1.3, a series of B-convergence results 
for multistep Runge-Kutta methods is obtained (see Theorems 2.4-2.7). 

2. MAIN RESULTS AND THEIR PROOFS 

Definition 2.1. The method (1.2) is said to be diagonally stable, if there exists 
an s x s diagonal matrix Q > 0 such that QB + BTQ > 0. 

Definition 2.2. The method (1.2) is said to have generalized stage order p, if p 
is the largest nonnegative integer which possesses the following properties: 

For any given initial value problem (1. 1) and stepsize h E (O, ho], there exist 
abstract functions yh and Hh: 

yh (t) (ylh (t), yh (t), h(t) ) E Xs, 

Hh (t) - (Hih (t), Hh (t), ... , H, (t)) E Xr, 
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such that 

IIHh(t) - H(t) II < dohP, IAh (t)|| < dhhP , 

11l5h(t)II ' d2hP+l, 5 11h(t)II < d3hP 5 

where ho > 0 is only required to be so small that for h E (O, ho] all the 
time nodes belong to the integration interval [O, T]; each di (i = 0, 1, 2, 3) 
depends only on the method and on bounds Mi of some derivatives of the 
exact solution y(t): Ildiy(t)/dti|| < Mi, t E [O, T]; Ah(t), h (t), and ah(t) 
are determined by the equations 

Yh(t) = AHh(t h) + hBF(Yh(t)) + Ah(t) 

(2.1) Hh(t) = CH(t -h) + hEF(Yh(t)) + 3h(t) 

y(t + rh) = IHh(t) + ah(t); 

the norm 11H on XN (N > 1) is defined by 

/N 1/2 

II = (N I IU,I12) vu = (u1, U2, ..., UN) E XN. 

Furthermore, if the quantities di (i = 0, 1, 2, 3) are also allowed to depend 
on bounds Ki for certain derivatives of the mapping f (but not on Ki): 

jIdif(y)/dyiII < Ki, y E X, then the aforementioned integer p is known 
as generalized weak stage order of the method. For the special case where 
Hh (t) H(t), the generalized stage order and generalized weak stage order are 
simply called stage order and weak stage order, respectively. 

Note that these two definitions follow from related previous papers, such as 
[2, 5, 6, 7, 11]. 

Theorem 2.1. The method (1.2)-(1.3) has stage order not smaller than T if 
Z9= Cv = 1, Zlaij = 1, i = 1, 2, ..., s, and the conditions B(T), C(T) 
hold. 

Proof. Let Hh(t) - H(t), Yh(t) = Y(t). Substituting this in (2.1), we get by 
Taylor expansion 
(2.2) 

[Ah(t)]i = E - P-I y(P)(t) + RiT(t) 5 p=_ j=l j=1 

i = 1 w 2 .r.. , s; 

php ( yj 1 ycyP- )y(P)(t) +RT (t); 

[ph(t)], = O,5 i = 1,5 2, ... , r -1 h(t) = 0; Hh (t) -H(t) = O,5 

where 
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(2.3) 

R| i(t) = j; [(1 T! (cT+Iy((T+1)(t + 6cih) 

r 

- aiju(j - )T+ly(T+l)(t + O(j - )h) 
j=1 

(I -10)! Z-b1jCjTy(T+1) (t + Tkh"' hT+l dO, 

j=1I i = 1, 2, ... ,s; 

RT(t) = j [(1 (rT+1Y(T+1)(t + Orh) 

r 

_: ajg(j- _)T+ly(T+I)(t + 0( -l 1)h)) 

(1- Q)T-1 s1 

S( cyjCjTy(T+l)(t +Ocjh)' 
hT+I dO5 

and therefore 

(2.4) JjRiT(0)11 < kiTh T+lM + JJRT(0)11 < kTh T+lM + 

where kiT (i = 1, 2, ... , s) and kT depend only on the method. Thus, using 
the conditions B(T) and C(T), we get the conclusion from (2.2), (2.4), and 
Definition 2.2. 5: 

Theorem 2.2. Suppose the method (1.2)-(1.3) satisfies the conditions B(T + 1), 
C(T), and ZEr j = l, EZ aij = l, i = l, 2, ..., s. Then 

(i) this method has weak stage order not smaller than T + 1; 
(ii) if there exists a real number v such that 

(2.5) C -+_ AT+1 - (T + 1)BCT = ves, 

then this method has generalized stage order not smaller than -c + 1. 
Proof. Let 

Hih(t) -y(t + ih) +JhT+ly(T+l)(t) i= 1, 2, ... , r; 

Yih(t) - y(t + cih) +,uihT+ly(T+l)(t), i5 = 1, 2, .. ., s, 

where /ui and 3 are constants to be determined. Substituting this in (2.1), 
expanding into Taylor series, and using the conditions B(T + 1) and C(T), we 
get 
(2.6a) 

[Ah (t)] cT+I T-++l( I y )c +-e]h (T+ 1) (t) ___ A4CT+I - (T + 1)BCT) + jj _31e 

+ 3hT+2 y(T+2)(t - Oh) dO + Ri, T+1 (t) 

+hZbijQj(t; u , iu.h), i = 1, 2, ..., s; 
i= I 
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I 

[3h(t)I = JhT (T j +2)(t Oh) dO + R +i(t) 

(2.6b) s 
+ h 1, Yj Qj (t; u, T, h); 

j=1 

(2.6c) [3 h(t)I - ThT+2 y(T+2) (t -Oh) dO, i = 1, 2, ... , r - 1; 

(2.6d) ah (t) = - Ah+l y(T+l ) (t); 

(2.6d)[H h(t) - H(t)]i = Jh T+ly(T+I)(t), i 5,2, ..............,r 

where 

(2.7) / = [JL1 2 ,... * *, 5 

Qj(t; ui Tc, h) = f(y(t + cjh)) - f(y(t + cjh) + T+Iy(T+ )(t)), 

and Ri,T+I(t), RT+I(t) are given by (2.3). Therefore, we have 

{ gH^(t) - H(t)I ? <v/IhTI +lMh +i 5 'h (t) II < hT+lM+i 

(2.8) < [3(t)1H ? 3shT+2Ia+2 1= 1,2,..., 

and by Taylor expansion, 

Qj(t; ui, T, h) 

=-ujhT+l {fI(y(t))y(T+1)(t) 

(2.9) + j[f"((l - O)y(t) + Oy(t + cjh))(y(t + cjh) - y(t)) 

+ (1 - 0)ujh T+if/I(y(t + cjh) + O,ujhT+ly(T+l)(t))y(T+l)(t)I 

X y(T+1)(t)dO} 

By the technique in [7], we can easily prove that 

(2.10) lfI(y(t))y(T+l)(t)l l Nl 

with NT depending only on some bounds Mi and Ki (but not on KI) . The 
relations (2.9) and (2.10) lead to 

(2.11) hTQI(t;u,T,h)H?N,iTh+l, 0 < h < ho, 

where the constant ho only need to satisfy the requirement mentioned in Defi- 
nition 2.2, and N,UT depends only on the method and on some bounds Mi and 

Ki (but not on KI). Now choose 

0, = C , Al)! (c - - (T + 1)BcT). 
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Then the relations (2.4), (2.6a), (2.6b), and (2.11) lead to 

[Al /(t) ]z i' ki,,r+ 1Mr+2 + NT E ibiji3 h+ i = 1, 25 ... , s, 

(2.12) / s 

[1 II1(t)IrII < kT+lMT+2+NjZT IEIyj) hT+2 
j=1 / 

provided that h E (O, hol. Thus, it is easily seen from (2.8), (2.12), and Def- 
inition 2.2 that the method (1.2)-(1.3) has weak stage order not smaller than 
T+ 1. 

Furthermore, if the additional condition (2.5) is satisfied, then we would 
instead choose ,u = 0 and 3 = v/(T + 1)!. In this case, (2.4), (2.6a), (2.6b), 
and (2.7) lead to 

(2.13) { I I[Ah(t)]III < (IJII(T + 1)! + ki,T+i)hT+2MT+2, i = 1, 2, ..., 5, (2.1) l11[$h (t)]rjj < (I1} I(T + 1)! + kT+l )hT+2 MT+2 5 

and it follows from (2.8), (2.13), and Definition 2.2 that the method (1.2)-(1.3) 
has generalized stage order not smaller than T + 1 . 0 

Theorem 2.3. Suppose the method (1.2)-(1.3) satisfies the conditions B(2s), 
C(s), and E(s), r > s, ci :? cj whenever i #1 j, -iCj = 1 and aj > 0, 

j = 1, 2, ... , r. Then this method is diagonally stable. 

This theorem was first proved in 1989 by the author and his post-graduate 
student Cao Xuenian in a research report "BH-algebraic stability of general 
multivalue methods" at Xiangtan University. In the following we give an alter- 
native proof. 

Let Q = diag(y1, Y2, . ..., ys) . Then it is seen from Theorem 1.1 that Q > 0. 
Thus, we only need to prove QB + BTQ > 0. Let p1(x) = rl'-ji(x - k), 
I = 1, 2, ..., s. Making a congruence transform based on the transformation 
matrix 

-p'l (Cl ) P2,(Cl) ... P' p(cl )- 
[p (C2) p (c2) ... ps(C2) 

P, (CS) p, (Cs) ... * 
, 

p5Cs) 

and using the conditions B(2s), C(s), and E(s), with the technique in [1] we 
obtain 

VT(QB + B TQ)V = [, mI,] 5 

where 
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s s s s 

(Im = ZyYip(Ci) E bij p(cj) + E yipm(ci) E bijPi(cj) 
i=1 j=1 i=1 j=1 

s 

= Z Y'i[Pi (X ) Pm (X) ]X=Ci 
i=l1 

r s r s 

- Z Pm(i - 1) SE yiaijp;(ci) - E pl(j - 1) E yiaijpm (ci) 
j=1 i=1 j=1 i=1 

r 
= Pi(r)pm(r) - E cjpl(j - l)pm(j - 1) 

j=1 
r r 

ZPm(j- )aj[pl(r)-pl1(j- 1)]- pl(j- l)aj[pm(r)-pm(j- 1)] 
j=1 j=1 

r r 

= pi(r)pm(r) - E aijpl(r)pm(j - 1) - E cajPm(r)Pl(j - 1) 
j=1 j=1 

r 

+ EZ ijpl(j - )pm(j - 1), ,m = 1, 2, ..., s. 

j=1 

Let 

a C2 ? -at2 

(X3 -(X3 Ppi(i) P2(1) ... Ps(1) 

R= . . , U- P(2) P2(2) . (2) 

0 Ear |ar L pi (r) p2(r) *.. ps(r) J 

-a2 -a3 -ar 1 

It is readily verified that the (1, m)-element of the matrix UTRU is also equal 
to 3lm 1, m = 1, 2, ...,s. Therefore, 

(2.14) VT (QB + BTQ)V= UT RU. 

Since Er 1 and j > O, j = 1, 2, ... r, for any given 

X = [XI 5 X25 .. * Xr]T :A ? 

we have 

r-1 r-1 

xTRx = Z ai+ix? +Xr - 2Xr a cEi+lXi 

i=l i=l 

r-1 / r-1 2 

> 1 E ai+Xi + KXr c ai+lxi) > o. 

Thus, R > 0. Since r > s and cl, c2, ... , cs are distinct, rank(V) = 

rank(U) = s, and therefore the conclusion QB + BTQ > 0 follows from (2.14) 
and R > 0. C1 
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In view of the B-theory for general linear methods (cf. [ 1 1]), a combination 
of Theorems 2.1-2.3 and 1.1-1.3 yields the following results: 

Theorem 2.4. Suppose the method (1.2)-(1.3) is algebraically stable and di- 
agonally stable, and satisfies B(T), C(T), ErI5 = 1, and Er= aij = 1, 
i = 1, 2, ..., s. Then this method is optimally B-convergent of order at least 
T. 

Theorem 2.5. Suppose the method (1.2)-(1.3) is algebraically stable and diag- 
onally stable, and satisfies B(T + 1), C(T), Er aG = 1, and EZ= aij = 1, 

i=1,2,...,s. Then 
(i) this method is B-convergent of order T + 1; 
(ii) if there exists a real number vi such that (2.5) holds, then this method is 

optimally B-convergent of order T + 1. 

Theorem 2.6. Suppose the method (1.2)-(1.3) satisfies the conditions B(w), 
C(1j),and E(4), r,q, j> s, w> 2s, ci#Acj whenever i j, Er=1 cj=1, 
and a1j > 0, j = 1, 2, ..., r. Then 

(i) this method is optimally B-convergent of order at least min{w, I}; 
(ii) this method is B-convergent of order min{w, q + I}; 
(iii) if there exists a real number v such that (2.5) holds with T = 1, then 

this method is optimally B-convergent of order min{w, I + 1 }. 

Theorem 2.7. Suppose r > s, EZrj =1, and ej > 0, j = 1, 2, ...,r. 
Then the multistep Runge-Kutta methods defined by (1.2), (1.3), and (1. 5) are 
all optimally B-convergent of order at least s and B-convergent of order s + 1. 

Remark 1. Specializing Theorems 2.4 and 2.5 to the case of r = 1, we obtain 
immediately the well-known related results for Runge-Kutta methods presented 
by Frank et al. [6, 7] and Burrage and Hundsdorfer [2]. 

Remark 2. Specializing Theorem 2.6 to the case of r = 1, we obtain imme- 
diately the well-known result that the implicit midpoint rule is optimally B- 
convergent of order 2 (cf. [9, 10]). 

Remark 3. For existence and uniqueness of the solution to the equation (1 .2a), 
we refer to [12]; if the space X is of finite dimension, see also [3, 4, 5, 7, 8]. 

3. SOME EXAMPLES 

Example 1. Consider the r-step one-stage multistep Runge-Kutta method 
r 

f ajyn-I+j + hbf(Y), 

(3.1) j=1 

( Yn+r = E OjYn-I+j + hyf(Y), 
j=1 

or equivalently, 

r r 
(3.2) Yn+r = jyn-l+j + hyf flYn+r + 11(aj-flaj)yn-+j; 

j=1 = 
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where 
r 

r> l, y=r-Eaj(j_-), aj= j(r+l -j), j= 1,2, ..,r, 
1=1 2' 

r ~~~~~~~b 
b = 1rr2 - sE atj(j - i)(2r + I - j)] - BB= 

the real parameters a,, a2, ..., ar satisfy j=1 j= 1 and aj > 0, j = 

1, 2, ... , r. It is easily seen that the method satisfies the assumptions of The- 
orem 2.6 with w = 2 and q = 4 = 1, and the condition (2.5) with T = 1 is 
trivial since s = 1. Therefore, in view of Theorem 2.6, the method (3.1) or 
(3.2) is optimally B-convergent of order 2. 

Example 2. For r = s = 2, the coefficients of a series of methods which satisfy 
the assumptions of Theorem 2.7 have been computed; some of them are as 
follows: 

(i) 

[0.25] [0.8570633514] A o.2352842040 0.7647157960] 
a o0.75] ' 0.3929366486 A L0.7592738744 0.2407261256] 

B 0.4290266119 0.4402646229] [1.634007031] 
L-0.1374873664 0.4682336621 [0.5714724214] 

(ii) 

[0.5] .9106438658 A ro.5049603372 0.4950396628 1 
[0.5] ' 0 [0.5893561342] 0 [0.9165272661 0.08347273392] 
r 0.4553667456 0.6609526643] 1.611359073 ] 

B- [-0. 1031014246 0.4991787090 J [0.4795500183] 

(iii) 

[0.75] [0.9560446375] A 0r.7597573923 0.2402426077] 
a [0.25 

' [ 
0.7939553625] ' -0.9744099679 0.02559003213] 

B 0.4782650437 0.8750152175] [1.593522869 
- [-0.08644371227 0.5036002413] c [0.4427465611] 

However, for all these methods, condition (2.5) with T = 2 does not seem 
to be satisfied, so we can only conclude that these methods are optimally B- 
convergent of order 2 and B-convergent of order 3. 

BIBLIOGRAPHY 

1. K. Burrage, High order algebraically stable multistep Runge-Kutta methods, SIAM J. Numer. 
Anal. 24 (1987), 106-115. 

2. K. Burrage and W. H. Hundsdorfer, The order of B-convergence of algebracially stable 
Runge-Kutta methods, BIT 27 (1987), 62-71. 

3. G. J. Cooper, On the existence of solutions for algebraically stable Runge-Kutta methods, 
IMA J. Numer. Anal. 6 (1986), 325-330. 

4. M. Crouzeix, W. H. Hundsdorfer, and M. N. Spijker, On the existence of solutions to the 
algebraic equations in implicit Runge-Kutta methods, BIT 23 (1983), 84-91. 

5. K. Dekker and J. G. Verwer, Stability of Runge-Kutta methods for stiff nonlinear differential 
equations, North-Holland, Amsterdam, 1984. 



B-CONVERGENCE OF RUNGE-KUTTA METHODS 575 

6. R. Frank, J. Schneid, and C. W. Ueberhuber, Stability properties of implicit Runge-Kutta 
methods, SIAM J. Numer. Anal. 22 (1985), 497-514. 

7. , Order results for implicit Runge-Kutta methods applied to stiff systems, SIAM J. 
Numer. Anal. 22 (1985), 515-534. 

8. W. H. Hundsdorfer and M. N. Spijker, On the algebraic equations in implicit Runge-Kutta 
methods, SIAM J. Numer. Anal. 24 (1987), 583-594. 

9. J. F. B. M. Kraaijevanger, B-convergence of the implicit midpoint rule and the trapezoidal 
rule, BIT 25 (1985), 652-666. 

10. Li Shoufu, B-convergence of general linear methods, Proc. BAIL-V Internat. Conf., Shang- 
hai, 1988, pp. 203-208. 

11. .., Stability and B-convergence of general linear methods, J. Comput. Appl. Math. 28 
(1989), 281-296. 

12. .., On the existence and uniqueness of solutions for implicit multivalue multiderivative 
methods, J. Comput. Math., Suppl. Issue (1992), 27-37. 

13. I. Lie and S. P. N0rsett, Superconvergence for multistep collocation, Math. Comput. 52 
(1989), 65-79. 

DEPARTMENT OF MATHEMATICS, XIANGTAN UNIVERSITY, HUNAN PROVINCE, PEOPLE's REPUB- 

LIC OF CHINA 


	Cit r113_c113: 


